

Solid State Devices 4B6

Lecture 9/10 - MRAM

Daping Chu

Lent 2016

Giant Magneto Resistance

Introduction

Giant Magneto Resistance (GMR)

- Basic structure and GMR effect
- Definition of magneto-resistance MR%
- Performance of a GMR superlattice
 Dependence of exchange coupling
 on spacer thickness
- Comparison of configurations
 Current-perpendicular-to-plan (CPP)
 Current-in-plan (CIP)

Useful Links / Further Reading

The Nobel Laureates

<u>Albert Fert</u>, Unité Mixte de Physique CNRS/ THALES, Université Paris-Sud <u>Peter Grünberg</u>, Forschungszentrum Jülich GmbH

Scientific review articles

"Giant steps with tiny magnets" by Agnes Barthélémy and Albert Fert et al., Physics World Nov. 1994.37

"Spintronics" by Dirk Grundler, Physics World April 2002.

Original scientfic articles

"Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices" by M.N. Baibich et al., Physical Review Letters Vol. 61, No. 21 (1988). (Albert Fert's original article)

"Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange" by G. Binasch et al., Physical Review B, Vol. 39, No. 7 (1989). (Peter Grünberg's original article).

Giant Magneto Resistance

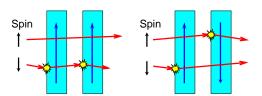
GMR and basic structures

Magneto-resistance MR%:

$$MR\% = \frac{\Delta R}{R}(\%) = \frac{\Delta \rho}{\rho}(\%)$$

GMR: $\Delta R/R$ as high as 50% (Rm Temp)

Normal MR: typical materials << 5%

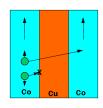

Three essential elements to get the GMR effect
Two ferromagnetic (FM) metal layers
One non-magnetic layer

Giant Magneto Resistance

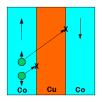
Two ferromagnetic metal layers

Ferromagnetic + Metallic

- Electrons in the metal conduction band → Conduction
- Spin of the electrons → Magnetisation
- Difference of spin-related electron populations → GMR
 (: different scattering cross-sections
 between ↑↑ and ↑↓)



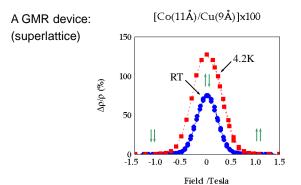
Giant Magneto Resistance


One non-magnetic layer

The Spacer

- Separation between the two FM layers
 - → Strength of exchange coupling
- Conductive spacer → Spin Valve, Pseudo-Spin Valve
- Insulating spacer → Magnetic Tunnel Junction

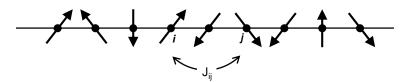
Magnetic Field Low Resistivity


No Magnetic Field High Resistivity

Giant Magneto Resistance

MR definition and a GMR device

Definition of MR%:


$$MR\% \equiv \frac{R(AP) - R(P)}{R(P)} \times 100 = \frac{\Delta R}{R}(\%) = \frac{\Delta \rho}{\rho}(\%)$$

Giant Magneto Resistance

Magnetic coupling

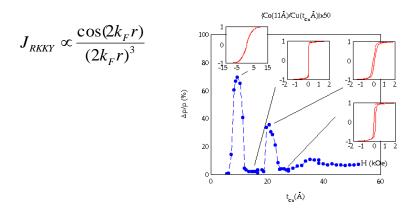
For two magnetic moments, \mathbf{M}_{i} and \mathbf{M}_{i} , at site *i* and *j*,

the energy of magnetic interaction between them is:

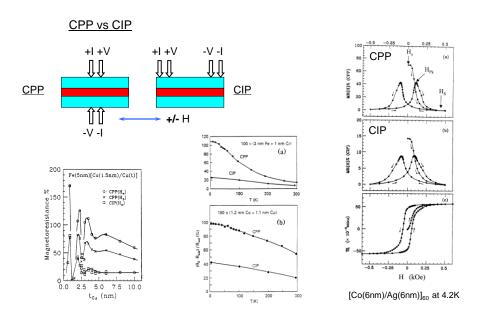
$$E_{ij} = -J_{ij}\mathbf{M}_i \bullet \mathbf{M}_j$$

where \boldsymbol{J}_{ij} is the exchange coupling between these two sites.

 $J_{ij} > 0$ \Rightarrow Ground state is Ferromagnetic (FM)


 $J_{ij} < 0$ \rightarrow Ground state is Anti-Ferromagnetic (AFM)

Giant Magneto Resistance


Spacer thickness effect

Exchange coupling depending on spacer thickness:

- RKKY type exchange interaction

Giant Magneto Resistance

Introduction

Spin valve (SV)

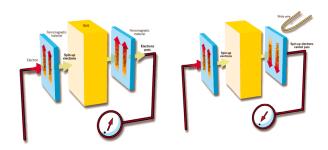
- Basic structure and pinning
- Different pinning approaches and performances
- Spin valve MRAM arrays

1T or 1D?

How to write

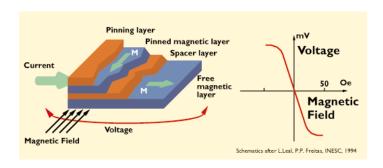
An example

1D SV cell

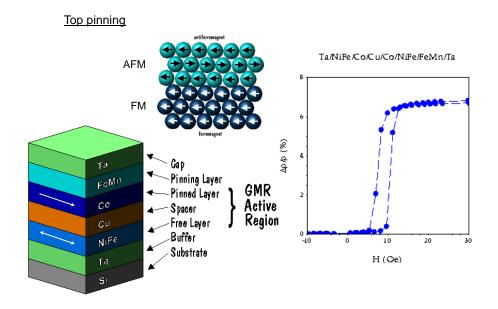

Spin valve

Basic structure

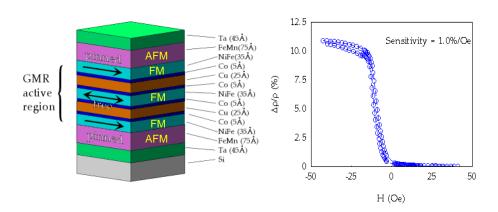
Direction of magnetization: **fixed** (pinned) in one FM layer; **free** to switch in the other one.


Spacer is conductive.

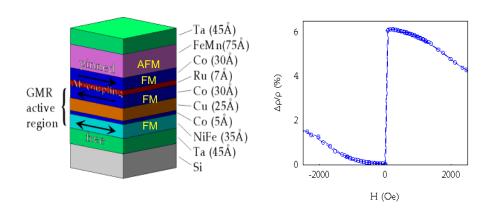
Different levels of MR when parallel/antiparallel → "0"/"1"



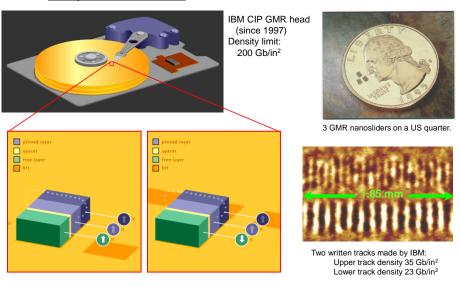
Pinning


Fixed direction of magnetization through a strong magnetic coupling between the pinning layer and pinned layer.

Spin valve

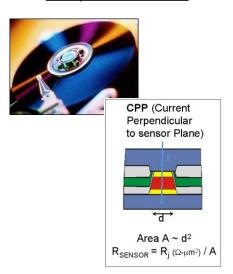


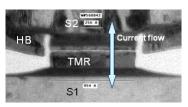
Symmetric pinning

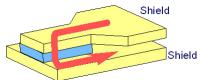


Spin valve

Antiferromagnetic coupling pinning

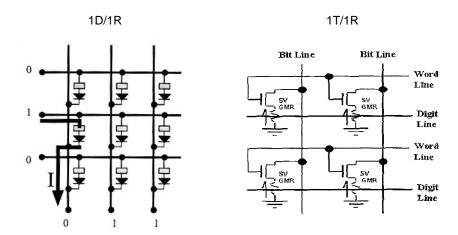



CIP spin valve GMR head



Spin valve

CPP spin valve GMR head

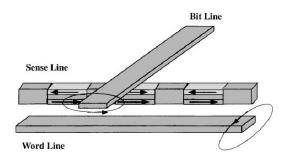


Hitach CPP GMR head (Oct 2007) Density expected: 500 Gb/in² to 1 Tb/in²

By 2011: 1 Tb HDD for laptop 4 Tb HDD for desktop

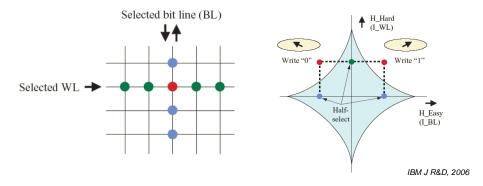
1D/1R and 1T/1R arrays

Spin valve

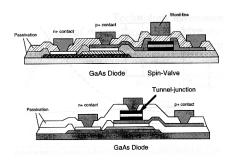

Read is easy, how to write?

The technique to avoid the mis-write due to the half-selection:

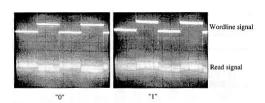
Send a pulse to word line, switching the cells half way;


Send another pulse to bit line to complete the switch;

Only the **combined** field is strong enough to switch the free layer of the selected cell.


Coincident field selection


Coincident field selection and switching threshold (asteroid) curve for writing a magnetic element of an MRAM. The ellipses show the direction of the shape anisotropy of the free magnetic layers of the bits; the arrows inside the ellipses indicate the orientations of the free-layer magnetization.



Spin valve

A 1D/1R SV cell

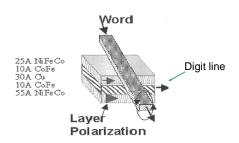
11

Pseudo spin valve

Introduction

Pseudo spin valve (PSV)

- Basic structure and operation method
- Performance of a PSV unit
 Effect of word line pulse width

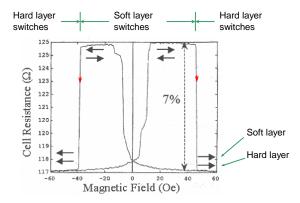

Pseudo spin valve

Basic structure

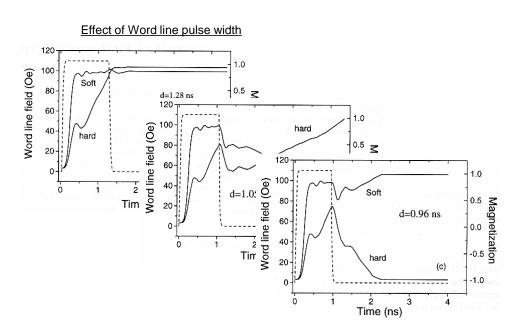
Concept: Direction of magnetization can be switched in both FM layers, but at **different** strength of the external field → "soft" and "hard" layers.

Spacer is conductive.

The hard layer is used for information storage → "0" / "1"



Pseudo spin valve


Operation of a PSV unit

Read-out is achieved by detecting the MR changes during switching the soft layer while the hard layer remains unchanged.

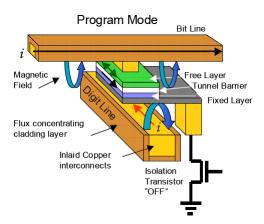
Storing four states (2 bits) per cell is possible.

Pseudo spin valve

Introduction

Magnetic tunnelling junction (MTJ)

- Basic structure
- MTJ cell and array
- Performance of an MTJ unit

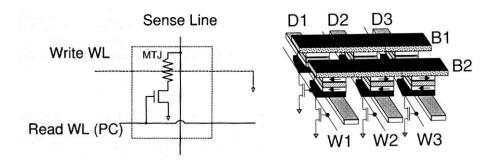

Temperature dependence

Effect of the MTJ spacer thickness

Different aspect ratios of the junction area

Magnetic tunnelling junction

Basic structure



- Similar arrangement as a SV in CPP configuration, but the spacer is made of insulator and acts as a tunnelling barrier.
- Isolation transistor:
 READ: ON

WRITE: OFF

 Motorola's flux concentrating cladding layer to reduce the WRITE power consumption.

MTJ cell and array

Magnetic tunnelling junction

Operation of an MTJ unit

Read operation similar to PSV. 2bit/cell is also possible.

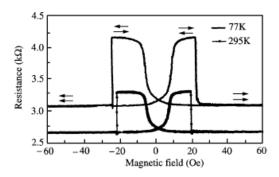
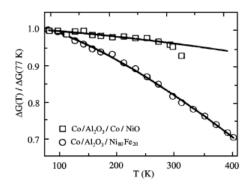



Fig. 3. Resistance versus applied magnetic field for a $Co/Al_2O_3/Ni_{80}Fe_{20}$ junction at room temperature and 77 K, showing JMR values of 20.2 and 27.1%, respectively. The barrier is formed by oxidation of a 8 Å Al layer (after Ref. [23]).

Some issues – Temperature dependence

Magnetic tunnelling junction

Some issues - Effect of spacer thickness

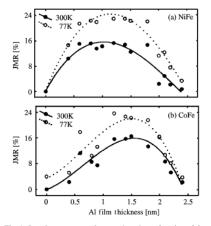


Fig. 4. Junction magnetoresistance plotted as a function of the thickness of the Al metal overlayer used to form the Al_2O_3 barrier in (a) $Co/Al_2O_3/Ni_{80}Fe_{20}$ and (b) $Co/Al_2O_3/Co_{50}Fe_{50}$ tunnel junctions (after Ref. [34]).

Some issues – Aspect ratio of junction area

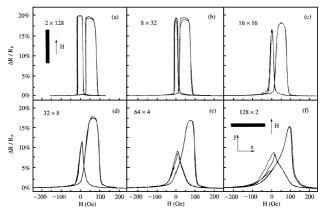


Fig. 6. Magnetoresistance curves at room temperature for a series of junctions with an identical area $(256 \, \mu m^2)$ but having different aspect ratio (after Ref. [31]).

MRAM summary

Some relevant topics

Comments and challenges

Motorola MRAM demonstrator

Performance comparison of some NVMs

Comments and challenges for MRAM

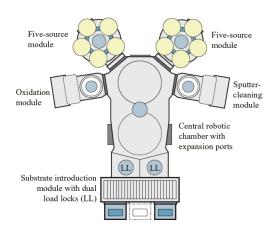
CPP vs CIP → Vertical structure good for scale down to small size.

SV vs MTJ → Higher resistance for faster speed.

Metal contamination → Ta layers both sides.

Metal inter diffusion within the sandwich structure at the temperature of Al/Cu interconnect process.

Power consumption of WRITE operation.

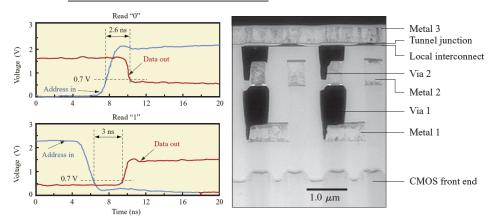

Reliable magnetic switching.

Uniformity of the very thin spacer (2-3nm) for 8-12 in wafers.

. . .

MRAM summary

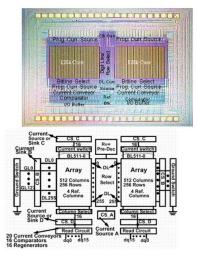
A deposition system for MTJ



A system installed at IBM suitable for fabricating MTJs on 200-mm or 300-mm diameter wafers, showing part of central robotic chamber in the foreground, two five-source modules in the background (left and right), and a cleaning (etching) module at the lower left.

Canon ANELVA

IBM CMOS MRAM: 1Kb FET twin cell



The first CMOS MRAM array fabricated at IBM — a 1Kb array containing FET twin cells fabricated in a $0.25\mu m$ technology: Time traces of input and output signals during read access operation and SEM cross section of twin-cell structure.

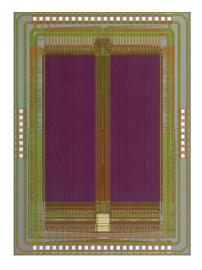
IBM, VLSI TSA TECH, 2005

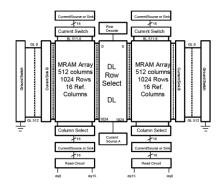
MRAM summary

Motorola 256Kb MRAM

Feb. 2001 / June 2002

Features:

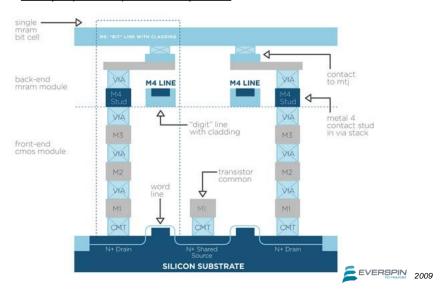

- · 256 kB / 1 MB
- · on 200 mm Si wafer
- 2x128k blocks / 16x64k blocks
- · 1MTJ/1Tr
- · reference cells
- · five-layer metallization / magnetic cladding · chip size: 3.9×3.2 mm² (40% for memory) · write current: 11 mA / 3 mA


Wafer uniformity for 0.6x1.2 μm^2 cells:

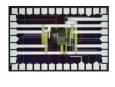
- TMR = 44.6 ± 0.7 %
- R_{A} = 9.97 ± 0.43 $k\Omega \mu m^{2}$

from H. Brückl, Oct 2003

Motorola 1Mb MRAM



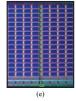
1T/1MTJ with Cu interconnects


Motorola, VLSI 2002

MRAM summary

Everspin (Motorola) embedded process

Increasing density of prototype MRAM chips (not to scale)


(a)

(d)

- (a) IBM 1mmx1.5mm 1Kb chip with a $5.4\mu m^2$ twin cell in 0.25 μ m technology with approximately 3-10ns access time; ©2000 IEEE.
- (b) Motorola 3.9mmx3.2mm 256Kb chip with $7.1\mu m^2$ cell in $0.6\mu m$ technology with 35ns access time. ©2001 IEEE;
- (c) Motorola 4.25mmx5.89mm 1Mb chip with 7.1μm² cell in 0.6μm technology with 50ns access time; ©2002 IEEE.
- (d) Motorola 4.5mmx6.3mm 4Mb chip with 1.55 μ m² cell in 180nm technology with 25ns access time; ©2003 IEEE.
- (e) IBM 7.9mmx10mm 16Mb chip with 1.42μm² cell in 180nm technology with 30ns access time; ©2004 IEEE.
- 32Mb, 64Mb and 128Mb (NEC & Toshiba), 512Mb (IBM?)

MRAM summary

Status of MRAM development

Update: Jan'05	Toshiba / NEC	TSMC	Sony	Samsung	IBM/IFX	Renesas	Motorola
Technology generation	0.13 μm	0.18 μm	0.18 μm	0.24 μm	0.18 μm	0.13 μm	0.18 μm
Demonstrator density	1 Mbit	1 Kbit	1 Mbit	Only cells	16 Mbit	1 Mbit	4 Mbit
MRAM type	Cross Point	1T2UMTJ ExtVia	Saturn shaped MTJ	MTJ+ SAF			Toggling MRAM
Operation Voltage	1.5 V	1.8 V	1.1 V		1.8V (internal)	1.2 V	NA
Acces time	250 nsec	40 nsec	NA		30 nsec	5-10 nsec	25-35nsec
Write current	4 mA	4.5 mA	NA			> 3mA	NA
Cell size (1T1C)	NA	1.06 μm²	2.07 μm²		1.42 μm²	0.81 μm²	0.54 μm²
Gen Size (1116)	6 F ²	33 F ²	64 F ²	8 F ²	44 F ²	48 F ²	16.7 F ²
Comments	-	Scalable to 6 F ²	-		3 masks	-	"product"
Source	IEDM '04	IEDM '04	VLSI '04	VLSI'04 / IEDM'03	VLSI /'04	IEDM '04/ VLSI '04	IEDM'03

D Wouters, IMEC

NVM comparison and reflection

Parameter	DRAM	SRAM	NOR Flash	NAND Flash	FeRAM	MRAM
Read cycles	>1015	>1015	>1015	>1015	1012-1015	>1015
Write cycles	>1015	>1015	$10^4 - 10^5$	before cycling 10 ⁶	$10^{12} - 10^{15}$	>1015
Write voltage (V) Cell write time (ns)	2.5-5 10-100	3.3-5 1-50	10/-10 6×10^3	$\frac{18}{2 \times 10^5}$	0.8-5 10-50	0.8–5 10
Write energy (pJ) Random access time (ns)	Few 10 ⁻² 40-70	6–70	9000 150	$^{1}_{\sim 10000}$	1 40–70	10–100 40–70
Cell size (F^2)	8	~100	12	4.6	9-13	6-10
Retention (years)	None	None	10	10	10	10
Scaling issues	Charge		Tunnel oxide → read current → access time	Erase voltage tunnel oxide scaling, SILC	3D + material texture	Switching field increase with scaling and uniformity
Status/forecast	256 Mb/1 Gb	4–16 Mb	32 Mb/128 Mb	256 Mb/1 Gb	1 Mb/4 Mb	few kb/1 Mb by 2002(?)
Applications	PC memory	Cache memory	Program code & data	Data files (camera, MP3)	Contactless smartcard	Envisaged: embedded (SOC) and mass storage

J D Boeck, et al, Semicond. Sci. Technol. 17, 342 (2002)

NVM comparison and reflection

	Memory	Fundamental	Particles in a	
Technology	Mechanism Particle		20nm Cell	Comment
	Electrons stored			
DRAM	on a capacitor	electron	~100,000	25fF*0.6V
	Electrons stored			
NAND	on a floating gate	electron	~50/state	
		Atomic Bond,		
		Bond Angle		
		Bond configuration		
		Ge		
	Crystalline state	octahedral/tetragonal		
Phase Change	Amorphous State	coordination	~5E4	
	Conducting			
	Filament	Cu ion or oxygen		
RRAM	Broken Filament	vacancy	few hundred	Constant with scaling
	Correlated			
	electron spins			20nm diameter X 2nm
	(Bohr			thick free layer
STRAM	Magnetons)	Bohr Magneton	~40,000	2 μ _R / Co, Fe atom
Ferro Electric	Correlated			Capacitor matched to
DRAM	dipoles	Ferroelectric Dipole	~700,000	DRAM at 20μC/cm ²

K Prall, et al, Micron, 2013

NVM comparison and reflection

		Barrier between	Method of modifying
Technology	State change	states	barrier
		Energy required for	
		electrons to leak	
	Electrons stored in a	through p-n junction of	
DRAM	dielectric	MOS transistor	Turning transistor on/off
		Energy required to	Electric Field induced
	Electrons stored in the	tunnel through tunnel	Fowler-Nordheim
NAND	floating gate	oxide barrier/IPD	Tunneling
	Energetically Bi-stable		
	states		
	Ferroelectric domain	Energy required to	Electric field overcoming
Ferroelectric	polarity	switch polarity	ferroelectric polarity
	Energetically Bi-stable		
	states		
	Crystallinity of the	Energy required to	
Phase Change	material	switch crystallinity	Thermal Energy
		Energy required to	
	lons stored in a	ionize and migrate	Electric field driven ionic
RRAM	dielectric	metal or oxygen ions	conduction
	Energetically Bi-stable		
	states		
	Magnetic Anisotropy of	0, 1	
STRAM	free layers	switch polarity	Spin Torque

K Prall, et al, Micron, 2013

NVM comparison and reflection

Current or Field Based	Technology	Typical Input Energy 20nm cell	Input Energy 20nm Cell (J)	Energy Efficiency = Energy Retained/Energy Input	How is Energy Corresponding to Retention Loss Calculated	Primary Write State Loss Mechanism
Field	DRAM	E=1/2 CV ² =1/2 * 25fF * 1.2 ²	1.80E-14	~1	Zero Loss	Relaxation, Dielectric leakage
Field	NAND	E=1/2 CV ²	1.00E-16	~1	Zero Loss	Electrons trapped outside of floating gate
Field	Ferroelectric	Integrate V(t)I(t) 25 uC/sq. cm 0.5 u^2 capacitor area	3.00E-13	~0.8-1	~Zero Loss	Only edge dipoles contain a usable signal, Center dipoles compensated. Final vs. remnant polarization
Current	NOR	E=I*V*τ	~1E-9 (50nm cell)	~1E-6	E=1/2 CV ²	Very few lucky electrons injected on the floating gate
Current	Phase Change	E=I*V*τ =100uA * 2.5V * 250nS	6.25E-11	~4.4E-5/1.4E-6	Phase transition barrier (Amorphous -> Crystalline 2.3eV 5nm)	Thermal energy loss outside of chalcogenide
Current	RRAM	E=I*V*τ =50uA * 2.5V * 50nS	6.25E-12	~ 2E-3/1.2E-4	Activation barrier for charged vacancy diffusion (0.5eV) in HfOx (post formation)	Thermal energy loss Parasitic current
Current	STRAM	E=I*V*τ =40uA * 0.4V * 10nS	1.6E-13	~1.5E-6	60KT/ Input Energy	Spin Related thermal agitation tunneling efficiency stochastic switching

K Prall, et al, Micron, 2013

NVM comparison and reflection

Technology	Demonstrated Scalability	Picture	Technology	Demonstrated Scalability	Picture
DRAM	<20nm		Phase Change [19]	~1nm	TE BE
NAND [17]	~15nm Planar Cell	(b)	RRAM [20]	~5nm Typical Filament size	1 (m)
Ferroelectric	~30nm FEFET	52 nm	STRAM [21]	~20nm	*

- [17] N. Ramaswamy, et al., IMW 2013 [18] J. Muller, et al., VLSI 2012, pg. 26 [19] J. Liang, et al., IEEE TRED, Apr. 2012, pg. 1155 [20] D-H Kwon, et al., Nature Nanotechnology, Jan. 2010, pg. 148 [21] W. Kim, et. al., IEDM 2011, 24.1.2, pg. 532

K Prall, et al, Micron, 2013