4B6

Solid State Devices and Chemical/Biological Sensors

Biological Sensors

Man Yi Ho myh20@cam.ac.uk

What is a Biosensor?

"A biosensor is a *bioreceptor* immobolized on a compatible *transducer*."

Biosensors detect interactions between *bioreceptor* (probe) and *unknown species* (target)

Multi-billion \$ market

(>70% on glucose sensors!)

A few of the blood glucose sensors (test strip meters) available at your local pharmacy...

Huge potential in the future, due to:

- increasing demand on healthcare
- decentralization / point of care healthcare system
- food safety
- environment monitoring

On the market: Glucose sensor, pregnancy test strip, DNA micro arrays, LFD based other in-*vitro* diagnostic devices (bacteria, antibodies ...)

In research: DNA sensor, protein analysis, in-*vivo* sensors, non-invasive diagnostic sensors. The current focus is on biocompatibility and point-of-care.

Challenge:

Reliability – as diagnostic deice it has to work with very high reliability. Stability – bio-receptors are vulnerable to the change of environment. Biocompatibility – for implantable sensor, coating must be biocompatible. Point-of-care – portable, disposable, low cost, robust, and easy to operate.

> Specificity of biorecognition molecule to particular analyte

Efficiency of transduction of biorecognised reaction

Overview

DNA detection:

Platform: PNA Probe for the detection of Avian Influenza Virus Methods: Field effect detection Electrochemical Impedance Spectroscopy (EIS)

- Protein detection:
 - I. Platform: Redox active self-assembled monolayer (SAM) Methods: AC voltammetry

DNA Structure and Binding

Disadvantages: Fluorescent labels are expensive Fluorescence emission is weak Expensive optical equipment and signal processing Motivation of DNA detection

Label-free Detection platform :

Mixed self-assembled monolayer (SAM) with DNA probe

Method:

Field effect detection Electrochemical Impedance Spectroscopy (EIS)

Peptide nucleic acid (PNA) probes: Optimization of PNA mixed SAM DNA probes vs PNA probes

Past Pandemics in the Last Century

Reservoirs of the avian influenza virus

- Wild birds are the natural reservoirs of the AI virus
- Little clinical signs in most infections
- Migratory waterfowl are believed to be responsible for the spread of avian influenza virus

Avian Influenza Virus

Neuraminidase and Hemagglutinine determines the subtype of the virus

Al capsid: Nucleoprotein (NP) and Matrix (M) protein

RNA segments

DNA Detection

Motivation of DNA detection

Detection platform :

Mixed self-assembled monolayer (SAM) with DNA probe

Method:

Field effect detection Electrochemical Impedance Spectroscopy (EIS)

Peptide nucleic acid (PNA) probes: Optimization of PNA mixed SAM DNA probes vs PNA probes

Label-free Detection of Avian Influenza Virus

Sample Pretreatment: Reverse Transcription Polymerase Chain Reaction (RT-PCR)

- **PCR:** Amplify a few copies of DNA to several orders of magnitude, generating millions copies of a particular DNA sequence (example)
- **RT-PCR:** An RNA strand is first reverse transcribed into its complement DNA (cDNA) using the enzyme reverse transcriptase, and the resulting cDNA is amplified with PCR

Asymmetric RT-PCR for single stranded DNA (ssDNA) production

Detection Platform: Mixed Self-assembled Monolayer (SAM)

DNA probe covalent immobilization on Au electrode

Mixed DNA-Mercaptohexanol SAM

Detection Platform: Mixed Self-assembled Monolayer (SAM)

Method: Potentiometric Detection – FET Detection

A typical electrochemical cell

Electrochemical Impedance Spectroscopy

- Electrolyte contains redox couple: [Fe (CN)₆]^{3-/4-}
- Measure ac current in phase and out of phase

 \rightarrow real and imaginary parts of the impedance : $Z(\omega) = Z_{real} + j Z_{imag}$

- Scan frequency of measurement $\boldsymbol{\omega}$
- Fit electrical circuit model

Method: Electrochemical Impedance Spectroscopy (EIS)

- Relies on detecting the intrinsic negative charge of the DNA
- Electrolyte contains negatively charged redox couple [Fe (CN)₆]^{3-/4-}
- Superimpose small ac voltage on formal potential of redox couple
- By measuring the ac current, the real and imaginary parts of the impedance as a function of frequency (10kHz to 1Hz) are extracted
- By fitting electrical model, the charge transfer resistance **Rct**, is obtained

DNA Probe – Optimization of Probe Density

EIS detection of a gene sequence cMA20 characteristic of avian influenza matrix protein H5N1

A Kukol, P Li, P Estrela, P K Ferrigno, and P Migliorato Analytical Biochem., 374(2008) 143-153

• Potential distribution described by the Poisson-Boltzmann equation:

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon}$$
 $\phi(x, y, z)$ electric potential

where
$$\rho = \text{charge} = \sum_{i} e_0 z_i n_i$$

 $n_i = \text{concentration of ionic species} = n_{0i} \exp\left(-\frac{e_0 z_i \phi}{kT}\right)$

• Use finite element method in FemLAB to solve in 3D

S Keighley et al. to be published

Simulation of the Electrochemical Double Layer Potential

DNA Detection

Motivation of DNA detection

Detection platform :

Mixed self-assembled monolayer (SAM) with DNA probe

Method:

Field effect detection Electrochemical Impedance Spectroscopy (EIS)

Peptide nucleic acid (PNA) probes: Optimization of PNA mixed SAM DNA probes vs PNA probes

Peptide Nucleic Acids (PNA)

- Selectively hybridizes with ssDNA target
- Electrically neutral
- Greater PNA/DNA duplex stability than DNA/DNA duplex
- Significantly higher specificity
 - detection of single base-pair mismatches

PNA Probe – Optimization of Probe Density

- Significant enhancement of R_{ct} change with hybridization compared to DNA probe (1.5 fold)
 - 40-fold change with optimized probe immobilization at 10mM PB

PNA Probe – Optimization of Measurement Buffer Ionic Strength

- Reducing ionic strength
 - PNA probes: R_{ct} constant
 - barrier after hybridization greatly increased
 - massive enhancement of R_{ct} change with hybridization

- DNA probes: similar effect on charge screening of both ssDNA and dsDNA
- both barriers increase
- little effect on R_{ct} change

S.D. Keighley, P. Li, P. Estrela, P. Migliorato, Biosens. Bioelectron. 24 (2008) 906

PNA Probe vs. DNA Probe

PNA probes: 385-fold R_{ct} change with hybridization

• DNA probes: 0.65-fold R_{ct} change with hybridization

S.D. Keighley, P. Li, P. Estrela, P. Migliorato, Biosens. Bioelectron. 23 (2008) 1291 S.D. Keighley, P. Li, P. Estrela, P. Migliorato, Biosens. Bioelectron. 24 (2008) 906 Motivation of protein detection

Detection platform:

Ferrocene redox self-assembled monolayer (SAM) detection platform

Method:

AC voltammetry

Theory on the detection principle

Specific interactions:

detection of biotin-streptavidin interaction

Proteins have numerous functions: building components of muscles, carry oxygen in the blood, antibodies, enzymes, etc.

Proteins are chains of amino acids and can have different sizes (e.g. the synthetic sweetener in Diet Coke has only 2 amino acids, while hemoglobin is composed of a sequence of 600)

Amino Acids

DNA runs a series of "programs" (the *genes*) every time a cell needs to make given proteins – it tells the cell exactly what sequences of amino acids to produce

Every 3 nucleotides specifies 1 amino acid and some combinations give the instruction to STOP production

1st base	2nd base				3rd base
	Т	С	А	G	
Т	Phe	Ser	Tyr	Cys	Т
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	STOP	STOP	А
	Leu	Ser	STOP	Trp	G
С	Leu	Pro	His	Arg	Т
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	А
	Leu	Pro	Gln	Arg	G
A	Ile	Thr	Asn	Ser	Т
	Ile	Thr	Asn	Ser	С
	Ile	Thr	Lys	Arg	А
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	Т
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	G

Motivation of protein detection

- Ferrocene redox self-assembly monolayer (SAM)
 - flexible
 - label-free
- Intrinsic charge of the target molecules modifies the electrochemical characteristic, formal potential E^{o'}, of the redox SAM

Instrumentation – AC voltammetry

Protein Detection I

Motivation of protein detection

Detection platform:

Ferrocene redox self-assembled monolayer (SAM) detection platform

Method:

AC voltammetry

Theory on the detection principle

Specific interactions:

detection of biotin-streptavidin interaction

Detecting the change in formal potential, E°'

- intrinsic charge of the target molecules causes a change in $\phi_{\scriptscriptstyle PET}$
- -> directional shift in formal potential ($E^{o'} = E^{o} + \phi_{PET} \phi_{S}$)

- $\phi_{\scriptscriptstyle M}$: potential at the metal
- $\pmb{\phi}_{\scriptscriptstyle PET}$: potential at plane of electron transfer, PET
- ϕ_s : potential at the solution
- ϵ_1 : dielectric constant of the SAM
- $\epsilon_{\scriptscriptstyle 3}$ $\,$: dielectric constant of the electrolyte

A positive shift in E^{o'} was observed upon interaction due to the net positive charge of streptavidin at pH2.5 13mM phosphate buffer

2. Proteine M.M., pl, composition, titrage programme (ABIM, France: http://www.iut-arles.up.univ-mrs.fr/w3bb/d_abim/ Peptide aptamer detection platform

Field effect transduction methods: open circuit potential (OCP) metal oxide semiconductor field effect transistor (MOSFET)

Real time detection with OCP

Linear array MOSFET

detection principle fabrication and layout detection of CDK

- Scaffold protein: STM with Cys insert -> -SH group for Au immobilization
- Advantages over antibodies:
 - Does not lose specificity when immobilized on surfaces
 - STM scaffold lacks affinity for human proteins
 - Flexibility: immobilization of STM scaffold protein is optimized, just need to change the peptide insertion for different targets

Field Effect Detection with Peptide Aptamer

Peptide aptamer platform:

Field effect transduction methods:

i) Open circuit potential (OCP)

ii) Metal oxide semiconductor field effect transistors (MOSFET)

Peptide aptamer detection platform

Field effect transduction methods: open circuit potential (OCP) metal oxide semiconductor field effect transistor (MOSFET)

Real time detection with OCP

Linear array MOSFET

detection principle fabrication and layout detection of CDK

Open circuit voltage (OCP) – Specific Interaction with CDK2

P Estrela, D Paul, P Li, S D Keighley, P Migliorato, Electochimica Acta 2008, 53, 6489

Peptide aptamer detection platform

Field effect transduction methods: open circuit potential (OCP) metal oxide semiconductor field effect transistor (MOSFET)

Real time detection of CDK with OCP

Linear array MOSFET detection principle fabrication and layout detection of CDK

MOSFET Chip Design – Extended Gate Structure

MOSFET Detection

MOSFET – Specific Interaction with CDK2

Sensistivity : 100 fM, within clinical range

P Estrela, D Paul, J J Davis, P Migliorato, Anal. Chem. 2010, 82, 3531–3536

Conclusion

Our platforms and electrical detection methods allows:

- Label free detection
- Low cost disposable micro-arrays
- Multiplexed
- Portable systems
- Simultaneous detection
- High throughput

Sensing pad with SU8 well

80x80µ

DNA / Protein Multiplexed Microarry

Future direction: Lab-on-chip

www.gene-quantification.de

Future direction: personalized medicine

Right drug, right dose, right time to the right patient

Drug therapy is chosen for each patient based on their particular genetic profile

M. Piquette-Miller, D. M. Grant, *Clinical Pharmacology & Therapeutics* (2007) **81**, 311–315.